MATH 2D Prep: Local Extreme Values

Facts to Know:

For simplicity, we assume all functions in this script are continuous and differentiable everywhere.

- 1. Critical numbers: x = c is a critical number of the function f(x) if
- 2. First derivative test: Suppose c is critical number of f(x)
 - If f' changes from positive(+) to negative(-), then f has a local _____ at c,
 - If f' changes from to +, then f has a local _____ at c,
 - If f' is + to the left and right of c, or to the left and right of c, then f has _____ at c,
- 3. Second derivative test: If f'(c) = 0 and
 - f''(c) > 0, then f has a local _____ at c,
 - f''(c) < 0, then f has a local _____ at c,
 - f''(c) = 0, then ______.

Example:

- 1. Find all local extreme values of $f(x) = x^3 3x$.
 - Find critical numbers:
 - Method 1: First derivative test:

Inteval	f'(x)	f(x)

• Method 2: Second derivative test:

$$f''(x) =$$

x	f''(x)	f(x)